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What means “classification”?
Let X a set (space, variety, universum, finite- or infinite-dimensional) of
objects and G a (Lie) group acting on X :

G×X →X , (g,X) 7→ g · X. Orbit(X) = {g · X : ∀g ∈ G}.

Classification: description of orbits of this action, starting from the “largest”
orbits and down to certain codimension (ignoring highly degenerated small
orbits). Orbits are labeled by a “simplest” representative, normal form.

Example (Matrix conjugacy)

X = Mat(n,C), G = GL(n,C), H · X = HXH−1.

Biggest orbits: diagonal matrices. Degenerate cases (multiple eigenvalues):
Jordan normal forms with different block structures.
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Infinite-dimensional examples
Example (Germs of vector fields,—analytic, smooth, formal)

X = {v : (Rn, 0)→ Rn = 0}, G = {H : (Rn, 0)→ (Rn, 0) invertible},
H · v = H−1

∗ (v ◦ H), H∗ = Jacobian (linearization) of H at 0.

Biggest orbit: nonsingular, v = const 6= 0.
Largest orbits in the stratum {v(0) = 0}: linear fields v(x) = Λx, Λ diagonal.
Degenerate cases: resonances (identities between eigenvalues of A = v∗(0)).

Example (Linear first order systems)

X = An = {A : ẋ = A(t)x, x ∈ Cn}, G = {H : t 7→ H(t) ∈ GL(n,C)},
H · A = B, B(t) = Ḣ(t) H−1(t) + H(t) A(t) H−1(t).

Action: gauge transform, change of variables in the system ẋ = A(t)x by
x = H(t)y for x, y ∈ Cn. Various flavors: global t ∈ CP1, local t ∈ (C, 0).
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Continuation: singularities of (formal) linear systems
C[[ t ]] the ring of formal power series in t, k = C[[ t ]](t) the field of fractions
(Laurent formal series with finitely many negative powers).

Let A ∈ Mat(n,k) a formal matrix Laurent series:

A(t) = t−rA−r + · · ·+ A0 + A1t + · · ·+ Antn + · · · , r ∈ N < +∞.

We consider “systems of differential equations” of the following form:

εx = A(t)x, ε = t d
dt the Euler derivation, εx = tẋ.

Why εx and not just ẋ = d
dt x? Algebraic “convenience”. The usual derivative is nilpotent on nonnegative monomials tn , while ε is diagonal.

The Lie group G = GL(n,C[[ t ]]). Action: formal gauge equivalence.

Pre-classification: (r > 0 the Poincaré index).

1 A ∈ Mat(n,C[[ t ]]): Fuchsian case, r = 0. The leading term is A0.
(If A(0) = A0 = 0, we have a nonsingular case in the ODE sense.)

2 A has negative powers (non-Fuchsian, r > 0, irregular case).
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Main theorem in the simplest case (Poincaré, . . . , end’XIX)
Theorem (Classification of nonsingular and Fuchsian systems)
A Fuchsian system from An

εx = A(t)x, A(t) = A0 + A1t + A2t2 + · · · ∈ Mat(n,C[[ t ]]),

is formally gauge equivalent to its truncation at the constant leading term

εx = A0x

if no two eigenvalues λ1, . . . , λn of the leading matrix A0 differ by a nonzero
natural number: λi − λj /∈ N (the non-resonance condition).

Note that this non-resonance condition holds automatically if A0 = 0 (in the non-singular case). When the series for A(t) is convergent, the
gauge transform H(t) can also be chosen convergent.

Degenerate (resonant) systems can be classified completely: one will have to
keep some higher order terms (very sparse matrices A′n for n > 0), but the
normal form A′(t) = A0 + A′1t + · · ·+ A′ntn + · · · will still be integrable.
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Are there other linear ordinary differential equations?
But of course! There are higher order linear differential equations of the form

a0(t) y(n) + a1(t) y(n−1) + · · ·+ an−1(t) y′ + an(t) y = b(t), ak, b ∈ k,

where y(k) = dk

dtk y stands for the kth derivative of the unknown function y in t.
It is assumed that a0(t) 6≡ 0 (otherwise the order n of the equation can be reduced). The equation is homogeneous, if b(t) ≡ 0. As before,
we can consider various settings regarding the coefficients ak if they are non-constant: they may be germs at the origin (singularity), formal
Laurent series or fully fledged functions with non-local domains.

Note that in the homogeneous case b ≡ 0 one can multiply both sides by any finite power tn , eliminating poles of coefficients.

An equation can be reduced to a system of first order for variables
x1 = y, x2 = y′, . . . , xn = y(n−1) with only the last line “individual”. Such
structure is called a companion form.

Conversely, any coordinate xk of ẋ = A(t)x satisfies an equation of order n.
The kth rows of consecutive derivations of the initial sytem, di

dti
x = Ai(t)x, Ai+1 = Ȧi + AiA0 , A0 = A(t), will eventually become linear

dependent over k no later after n steps. This translates into a differential identity between the derivatives x(i)
k .
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One theory or two?
From now on we will deal with homogeneous equations only, of the form
Ly = 0, where L is a differential operator.

Do we have a gauge group action?—No!
Consider an equation Ly = 0 of order n, reduce it to a companion system
ẋ = Ax from An. But after a gauge transform the system loses its companion
form! Reduction back to a scalar higher order equation is problematic.

The natural “gauge transforms” y = h(t)u preserving the companion structure form a group obviously too small to have interesting orbits.

Can we “doctor” the idea of “changing of variables” to mimic action of groups
G = GL(n, ·) on the higher order equations? Looks like this is possible.

u = h0(t)y + h1(t)y′ + · · ·+ hn−1(t)y(n−1) + · · ·
The series may be truncated (removing all higher derivatives in . . . ) if we are going to apply it to nth order equations.

Can one organize such “transformations” into a group? in particular,
How this change of variables should be inverted? Do we need to solve
differential equations? what about the initial conditions?
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Differential operators and Ø. Ore (1932–1933) calculus
Differential equations can be described using differential operators or
“noncommutative univariate polynomials” L ∈ k[z] with coefficients from a
field k and a noncommutative variable z. (Think of z = ∂ = d

dt or z = ε.)

The key point is the commutation law. We consider only the rules which are
compatible with the notion of degree in z:

az− za = b, a, b ∈ k. (1)

It implies the Leibnitz rule, e.g., when k is a differential field and z is a (first
order) differential operator. We denote b = a′ to support this mnemonics.
Any L ∈ k[z] can be uniquely presented as L =

∑n
i=0 aiz

i , ai ∈ k all to the left from zi . Computing products needs using the rule (1).

Theorem (Euclid algorithm)
For any F,G ∈ k[z] with deg G 6 deg F there exist

F
right
= GQ + R

left
= PG + S.

Corollary: r-lcf(A,B) = M is well defined: M = HA = GB.
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Factorization and homogeneous linear ODE’s, I
Let z = ∂ or z = ε and k a differential field (e.g., meromorphic germs). Then
Ly = 0 is a differential equation (solutions usually are outside of k).

Divisibility F = QG means that {Gy = 0} ⊆ {Fy = 0}. All the way around,
if {Gy = 0} ⊆ {Fy = 0}, then F = QG (G is a right divisor).
What does the change of variables u = h0(t)y + h1(t)y′ + · · · + hn−1(t)y(n−1) + · · · ? Replaces y by u = Hy.

Equation: Ly = 0. Change of variables: u = Hy. How to transform L?

How to write an equation Mu = 0 for u?

0 = Mu = MHy ∀{y : Ly = 0} ⇐⇒ MH divisible by L ⇐⇒ MH = GL.

Pre-definition
Two linear operators L,M ∈ k[z] are “conjugated” by an operator H ∈ k[z], if
there exists operator G ∈ k[z] such that MH = GL in k[z].
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Factorization and homogeneous linear ODE’s, II
Pre-definition
Two linear operators L,M ∈ k[z] are “conjugated” in k[z] if there exist
operators G,H ∈ k[z] such that MH = GL.

We need to exclude the trivial case H = L, G = M.

The change of variables H must be faithful: no solution of Ly = 0 is sent to
zero by H. Algebraically, {Ly = 0} ∩ {Hy = 0} = 0, that is,

r-gcd(H,L) = 1.

Definition (Ore conjugacy, O-conjugacy)
Two linear operators L,M ∈ k[z] are O-conjugated if there exists G,H ∈ k[z]
such that MH = GL and r-gcd(L,H) = 1.
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Questions.

1 Is O-conjugacy a genuine equivalence relation (symmetric, reflexive,
transitive)?

2 Is it induced by some clandestine group action?

Answers.

1 Yes, although the reflexivity (symmetry) is not at all obvious.
2 Doesn’t seem likely, although I don’t know any proof.
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Field of fractions k = C[[t ]](t) vs. the ring C[[t ]].
The local case: k = C[[ t ]](t) is the field of fractions (Laurent series) of the
ring C[[ t ]] of formal Taylor series and z = ε.

Why not z = ∂t? Any operator L ∈ k[z] can be multiplied from the left by a
suitable tk, k ∈ Z, so that it falls into C[[ t ]][z] (cancellation of poles).

This multiplication does not affect the homogeneous equation, Ly = 0. When
studying homogeneous differential equations, we can always assume that their
coefficients are from C[[ t ]].

Obviously, the algebra k[z] is the same for z = ∂t and z = t∂t (re-expansion).

However, the algebras C[[ t ]][∂] and C[[ t ]][ε] are different. Pay attention!

Remark. Working with Taylor series (even formal) is much more convenient:
you always know where the leading term of any expansion is. Avoiding
division in C[[ t ]] is relatively easy.
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Weyl-type algebra W : some anatomy
W = C[[ t ]][ε] the Weyl-type algebra1 (only nonnegative powers of t):

Wn =
{

L =
∑

k > 0 tk pk(ε) : pk ∈ C[ε], deg p 6 n
}
, W =

⋃
n Wn.

The commutation law in (t, ε)-variables reads p(ε) tk = tk p(ε + k).
The commutation law would look much less simple if applied to z = ∂: p(∂)tk will be a sum of many terms tiqi(∂) with i 6 k.

Any L ∈ W can be expanded in the noncommutative series

L =
∑
k > 0

n∑
j=0

cjktkεj, cjk ∈ C.

Support: supp L = {(j, k) : cjk 6= 0} ⊂ [0 .. n]× Z+ ⊆ Z2.

Newton polygon:

∆L = conv
(
supp L

Minkowski
+ Z′+

)
, Z′+ = {0} × Z+ ⊆ Z2.

1The classical Weyl algebra is C[t, ∂] with the Leibniz rule [∂, t] = 1.
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Fuchsian operators

Definition (Fuchsian operators, class Fn)

An operator L =
∑

k > 0 tk pk(ε) ∈ C[[ t ]][ε] = W of order n is called Fuchsian,
if ∀k > 0 degε pk 6 n and degε p0 = n.

Raison d’être: specific properties of Fuchsian equations Ly = 0, L ∈ F .

Correspond to: Fuchsian systems εx = Ax, A ∈ Mat(n,C[[ t ]]).

Newton diagram: vertical semistrip [0, n]× R+ ⊆ R2.

Remark. F =
⋃

n> 0 Fn is closed by composition in W but is not a
subalgebra (leading terms may cancel each other after summation).

Definition (Non-resonant Fuchsian operators)
L ∈ F is non-resonant, if no two roots λi, λj of the characteristic polynomial
p0(λ) differ by a natural m ∈ N: λi − λj /∈ N.

Equivalent definition: ∀m ∈ N gcd
(

p0(λ), p0(λ+ m)
)

= 1.
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Flavors of O-equivalence on W

Definition (O-conjugacy in W -flavor)
Two linear operators L,M ∈ W are W-conjugateda if there exists G,H ∈ W
such that MH = GL and r-gcd(L,H) = 1.

aOriginally the O-conjugacy was for k[z] = C[[ t ]](t)[ε] and not for W = C[[ t ]][ε].

1 Which operators L we want to classify up to W-conjugacy? Nonsingular,
Fuchsian, arbitrary irregular (non-Fuchsian)?—Simplest first.

2 Which operators H,G we allow for the W-conjugacy?
1 Nonsingular (up to a multiple of tk)
2 Singular Fuchsian: F,G ∈ F ( W
3 Arbitrary (irregular) from W

The choice is nontrivial: the corresponding equivalence will be coarser or finer, cf. with holomorphic/meromorphic classification.

Experimental result (SHIRA TANNY, S.Y.) + Definition
Only the choice of Fuchsian operators H,G ∈ F ( W for W-conjugacy
leads to a nontrivial classification. We call it F-equivalence on W .
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Main theorem for Fuchsian systems (recall)
Theorem (Classification of Fuchsian systems)
A Fuchsian system from An

εx = A(t)x, A = A0 + A1t + A2t2 + · · · ∈ Mat(n,C[[ t ]]),

is formally gauge equivalent to its truncation at the leading term

εx = A0x

if no two eigenvalues λ1, . . . , λn of the leading matrix A0 differ by a nonzero
natural number: λi − λj /∈ N (the non-resonance condition).

Degenerate (resonant) systems can be classified completely: one has to keep
some higher order terms (very sparse matrices A′n for n > 0), but the normal
form A′(t) = A0 + A′1t + · · ·+ A′ntn + · · · will still be integrable.
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Main theorem for systems in the simplest case
Theorem (F-Classification of Fuchsian operators, SHIRA TANNY and
S. Y., Arnold Math J., 2015)
An operator from Fn

L = p0(ε) + tp1(ε) + · · ·+ tkpk(ε) + · · · ∈ C[[ t ]][ε]

is formally F-equivalent to its truncation at the leading term

L = p0(ε),

if no two roots λi, λj of the leading term p0 differ by a natural number,
λi − λj /∈ N (the non-resonance condition).

Degenerate (resonant) equations can be classified completely: one has to
keep some higher order terms (very sparse polynomials qk ∈ C[ε] for k > 0 in
the normal form M =

∑
k > 0 tkqk), but the normal form will be integrable.
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Strange twin algebras
The proof is achieved by calculations in the Weyl algebra W = C[[ t ]][ε],
which are surprisingly similar to calculations in the Lie group GL(n,C[[ t ]]).

Both are formal series
∑

tkpk(ε), pk ∈ C[ε], resp.,
∑

tkAk, Ak ∈ GL(n,C).

In the first case the non-commutativity is between the variables t, ε, while
polynomials C[ε] form a commutative ring. In the second case t commutes
with matrices, but the group GL(n,C) itself is non-commutative.

In the (classical Poincaré) proof elimination of all non-principal terms rests
upon solving (with respect to H) the matrix homological equation

[A0,H] + nE = R, A0 the leading matrix, n ∈ N, R any r.h.s.

In the Weyl case one has to solve w.r.t. u, v ∈ C[ε] the Sylvester equation

up0 + vp[n]0 = w, p0 ∈ C[ε], p[n]0 ( · ) = p0( · + n).

Any higher reasons for this parallelism, anybody?
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F-equivalence, revisited
Definition (F-equivalence), recall.
Two linear operators L,M ∈ W are F-conjugated if there exist G,H ∈ F
such that MH = GL and r-gcd(L,H) = 1.

To “transform” M by H (or L by G), we need to find another factorization of
the noncommutative product MH so that the term L, “similar” to M, would
appear to the right.

What means this “similarity”? What do we know about noncommutative
factorization in general and in the specific case of W in particular?

The general theory of noncommutative factorization in k[z] was developed by
ØYSTEIN ORE in the same papers (1932–1933).

In the specific case of W = C[[ t ]][ε] we have much more precise description
in terms of the Newton polygon.
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Weyl-type algebra W : Newton polygon (recall)
W = C[[ t ]][ε] the Weyl-type algebra (only nonnegative powers of t):

Wn =
{

L =
∑

k > 0 tk pk(ε) : pk ∈ C[ε], deg p 6 n
}
, W =

⋃
n Wn.

The commutation law: p(ε) tk = tk p(ε + k).

Series expansion: tk to the left from εj (canonical form),

L =
∑
k > 0

n∑
j=0

cjktkεj, cjk ∈ C.

Support: supp L = {(j, k) : cjk 6= 0} ⊂ [0 .. n]× Z+ ⊆ Z2.

Newton polygon:

∆L = conv
(
supp L

Minkowski
+ Z′+

)
, Z′+ = {0} × Z+ ⊆ Z2.

Mnemonics: t “small”, ε “large” in the sense of domination
between monomials. In particular, tkεj = εjtk + · · · (dominated terms).
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Factorization and Newton polygons, I
∆: W 3 L 7−→ ∆L ⊆ R2 the Newton polygon.
The logarithm rule:

∆LM = ∆L + ∆M = ∆ML

(+: Minkowski sum).

Proposition.
Any (admissible)
∆ can be uniquely expanded
as ∆ = ∆1 + · · ·+ ∆ν ,
∆i single-slope polygons.

Admissibility:
(1) vertices only at the lattice points, (2) lower left
corner at the origin, (3) invariant by upwards shift.

Remark. If the lower edge of a single-slope polygon contains no internal
lattice points, then ∆i is irreducible in the class of admissible polygons,
otherwise one can subdivide (expand) it further.

Miracle. Non-commutativity of W is not an obstacle to the logarithm rule.
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Factorization and Newton polygons, II
Theorem (Factorization of operators from W )
Any expansion of ∆L into single-slope polygons ∆i with pairwise different
slopes corresponds to a factorization L = L1 · · · Lν , ∆Li = ∆i in any order.
The operators Li are unique up to unit factors from C[[ t ]] from left/right.

Remark on factorization of single-slope operators
If L is a single-slope and its Newton diagram is reducible (there are internal lattice points on the lower edge), then possibility of further
factorization depends on arithmetic properties of roots of an auxiliary polynomial associated with the ∆-leading terms of L. Once again
resonances appear and determine the reducibility.

A few references (Newton should be mentioned as a commutative precursor):

1 VAINBERG, M.M., TRENOGIN, V.A.: Theory of Branching of Solutions of
Non-linear Equations, 1974.

2 VAN DER PUT, M., SINGER, M.F.: Galois Theory of Linear Differential
Equations, 2003.

3 MEZUMAN, LEANNE, YAKOVENKO, S.: Formal Factorization of Higher Order
Irregular Linear Differential Operators. Arnold Math J. , 2018.
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A few words about the proof
Commutative case. Factorization in the algebra O(t)[ξ] or C[[ t ]][ξ] with
[t, ξ] = 0. Solved by Newton (sliding ruler method). Fiat Newton polygons!

Geometrically: detection of irreducible components of a planar curve (germ).

Modern proof: desingularization (blow-up) on the plane C2.

Formal (Poincaré-Dulac-type) proof. Write the identity L = MN as an
infinite triangular system of equations in C[ξ] graded by powers of t and
solve them inductively. Solvability of each equation is not at all
straightforward, but it guaranteed by the “geometric” proof.

Noncommutative case: solvability of the infinite system follows from that of
its commutative analog.

Reason: the “homological operators” survive the mild non-commutativity of
C[[ t ]][ε]: [ε, t] = t� 1 (the formal parameter t is “small” cf. [∂, t] = 1).
Hence infinite system of equations over C[ε] is inductively solvable.
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Some action, finally?
Problem. F-classification of single-slope non-Fuchsian operators
Given a single-slope L ∈ W r F , find a simplest M such that MH = GL for
some G,H ∈ F . Can one remove non-principal terms, like in F ?

1 The second condition r-gcd(L,H) = 1 becomes obsolete if L is
non-Fuchsian (positive slope).

2 Once G is chosen, the product GL is “two-slope” and can be uniquely
factored with the Fuchsian (zero slope) term being to the left or to the
right. One factorization, GL, is the starting point, the other MH with
Fuchsian H, yields M and H uniquely up to a unit in C[[ t ]].

3 Abusing notation, we can “call” H = Ĝ (of course, this “similarity”
depends on L).

4 Ultimately, given L, we have an “action” Âd • of F on W , defined as

L
ÂdG7−→ M = GLĜ−1 (to be understood as MĜ = GL).

S. Yakovenko (Weizmann Inst.) Local classification in Weyl algebra U. of Toronto, 2021 24 / 27



An algebraist’s nightmare

Pseudo-quasi-semi-action of F on W

L
ÂdG7−→ M = GLĜ−1 (to be understood as MĜ−1 = GL).

F not a group, only a semigroup. Notation G−1 is suggestive but
misleading (although suggested by Ore himself). Besides, G 6= Ĝ.

C[[ t ]] is a graded (commutative) ring, but W is not a graded algebra, only
filtered by powers of t (non-commutativity!).

F is not a subalgebra in W , only a multiplicatively closed subset.

There is absolutely no idea how one could get from classification of
single-slope operators to that of their compositions.

Intermediate conclusion. Apparently we lack some basic understanding of
the Weyl-type algebras. Perhaps, an adequate algebraic structure hides
beyond the above ad hoc constructions, but which one?
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Teaser?
Perhaps, we need to extend the framework and consider instead of the
polynomial C[ε] the building brick

R = C[ε][[ε−1 ]] =

· · ·+ c−nε
−k + · · ·+ c−1ε

−1+

c0 + c1ε + · · ·+ cnε
n,

n < +∞,

(Formal Laurent series in ε−1)?

Thinking in (slow) progress (with BORIS KHESIN). Too early even to
informally discuss.
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Cast

SHIRA, LEANNE and hopefully another future WIS M.Sc. student...

Thank you for your attention!

S. Yakovenko (Weizmann Inst.) Local classification in Weyl algebra U. of Toronto, 2021 27 / 27


