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Let M be a compact, oriented Riemannian manifold of dimension
n = 2, 3. The movement of an ideal fluid filling M can be
described by the Euler equations

∂tu +∇uu = −∇p∆−1div∇uu

div(u) = 0

u(0) = u0

(E)

where u : M × R→ TM is the velocity and p : M × R→ R the
pressure.

Remark 1

In Sobolev spaces Hs (for sufficiently high s), the problem (E ) is
locally well-posed in any dimension. It is globally well-posed in
dimension two, but this is not known in dimension three.
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Definition 1

A vector field u in R3 is axisymmetric if u does not depend on θ in
cylindrical coordinates, i.e.,

u(r , z) = u1(r , z)∂r + u2(r , z)∂θ + u3(r , z)∂z . (1)
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Definition 1

A vector field u in R3 is axisymmetric if u does not depend on θ in
cylindrical coordinates, i.e.,

u(r , z) = u1(r , z)∂r + u2(r , z)∂θ + u3(r , z)∂z . (1)

Definition 2

An axisymmetric vector field u is swirl-free if it has no ∂θ
component, i.e.,

u(r , z) = u1(r , z)∂r + u3(r , z)∂z . (2)
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Theorem (Ukhovskii, Yudovich, ’68)

The 3D swirl-free Euler equations are globally well-posed.

Remark 2

Global well-posedness is still unknown in general for the
axisymmetric Euler equations with swirl.

Remark 3

Since in R3 infinitesimal isometries are generated by rotations and
translations, the only other interesting case is that of helicoidal
symmetry.
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Definition 3

A vector field in R3 is helicoidal if it commutes with the vector
field θθ + ∂z .

8 / 42



Definition 4

A vector field in R3 is helicoidal if it commutes with the vector
field ∂θ + ∂z .

Definition 5

If u is a helicoidal vector field, the swirl of u is the quantity

σ = 〈u, ∂θ + ∂z〉

Theorem 1 (Dutrifoy, ’99)

The 3D helicoidal, swirl-free Euler equations are globally
well-posed.
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Let M be a Riemannian manifold and K 6= 0 a Killing field on M.

Definition 6

A vector field u on M is axisymmetric if [u,K ] = 0.
If u is axisymmetric, its swirl is the function σ = 〈u,K 〉.
When σ ≡ 0, u is called swirl-free.

Theorem 2 (L., Misio lek, Preston ’18)

If u0 is axisymmetric (resp. swirl-free), then the corresponding
solution u(t) of the Euler equations remains axisymmetric (resp.
swirl-free), for as long as it exists.
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A different way to model a fluid is to track the position, rather
than the velocity, of each particle over time.

In this description, we let η(x , t) be the position, at time t, of
the particle that started at x .

By definition, η(x , 0) = x for all x .
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Since fluid particles are not allowed to fuse together or split, for
each fixed time t, the map

ηt : M → M

x 7→ η(x , t)
(3)

is a bijection. In fact, it is a volume-preserving diffeomorphism.

Therefore, t 7→ ηt is a curve in Dµ(M), the group of Sobolev
volume-preserving diffeomorphisms of M, starting at the identity
map, η0 = e.
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For technical reasons, it is convenient to work with diffeomorphisms
which are of Sobolev class, rather than C∞ diffeomorphisms.

The group

Ds
µ(M) = {η : M → M : η, η−1 ∈ Hs(M,M), and η∗µ = µ }

of Sobolev volume-preserving diffeomorphisms is a C∞ Hilbert
manifold (Eells ′66; Ebin-Marsden ′70; Omori ′74).

Its tangent space at the identity id is the set

TeDs
µ(M) = {v ∈ Hs(TM) : div v = 0}

of all divergence-free vector fields on M. At other points
η ∈ Ds

µ(M), the tangent space is

TηDs
µ(M) =

{
v ◦ η : v ∈ TeDs

µ(M)
}
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Ds
µ(M) is not a Lie group: right multiplication

Rη : Ds
µ(M)→ Ds

µ(M)

ξ 7→ ξ ◦ η
(4)

is smooth, since

dRη(e) : TeDs
µ(M)→ TηDs

µ(M)

u 7→ u ◦ η
(5)
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However, left multiplication

Lη : Ds
µ(M)→ Ds

µ(M)

ξ 7→ η ◦ ξ
(6)

is not smooth, because the expression

dLη(e) : TeDs
µ(M)→ TηDs−1

µ (M)

u 7→ Dη ◦ u
(7)

causes a loss of one derivative due to the Dη term.
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Ds
µ(M) also carries a natural right-invariant Riemannian metric,

given at the tangent space to the identity map by

〈u, v〉L2 =

∫
M

〈u, v〉 dV , u, v ∈ TeDs
µ(M)

This is a weak Riemannian metric, i.e., it defines a topology (L2)
which is weaker than the topology our manifold has (Hs).

Therefore, the existence of a smooth Levi-Civita connection and
geodesic spray are not guaranteed, but must be proved separately.
This was done by Ebin and Marsden in their 1970s paper.
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Arnold’s insight: a curve

η : [0,T )→ Ds
µ(M), η(0) = id,

is a geodesic (η′′(t) = 0 ) of the L2 metric if and only if the
time-dependent vector field u(x , t) defined by

d

dt
η(x , t) = u ◦ η(x , t) (8)

is a solution of the Euler equations:

∂u

∂t
+∇uu +∇p = 0

divu = 0

u(0) = u0

(9)
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We have an L2 Riemannian exponential map

expe : U ⊆ TeDs
µ(M)→ Ds

µ(M) (10)

which can be viewed as follows: given a divergence-free vector field
u0 ∈ U , let u(x , t) be the unique solution of Euler equations with
initial data u0. Integrating this vector field, we get the position
η(x , t). Then,

expe(u0) = η(x , 1)

It can be shown that this map is C∞ smooth, and in fact a
diffeomorphism in a neighborhood of 0 ∈ U .

This proves local well-posedness (in Hs) of the Euler equations in
all dimensions.
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Theorem (Ebin, Misio lek, Preston - 2006)

If dim(M) = 2, expe is a Fredholm map of index zero.
If dim(M) = 3, expe is not Fredholm.

Take M = D2 × S1, and let u0 = ∂θ. Then, then the image of

d(expe)(πu0) : TeDs
µ(M)→ Texpe(u0)Ds

µ(M)

is not closed.

Note that this is an axisymmetric flow, but not swirl-free.
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Now let M be a Riemannian 3-manifold with a Killing vector field
K 6= 0. Let {φt} be the flow of K . Consider the sets:

As(M) = {η ∈ Ds
µ(M) : η ◦ φt = φt ◦ η, ∀t}

TeAs(M) = {u ∈ TeDs
µ(M) : [u,K ] = 0}

(11)

Theorem 3 (L., Misio lek, Preston, 2018)

The set As(M) is a totally geodesic submanifold of Ds
µ(M) with

Lie algebra TeAs(M).

If u0 is a vector field of sufficiently small swirl, then the map

d(expe)(u0) : TeAs(M)→ Texpe(u0)As(M) (12)

is Fredholm of index zero.
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Proof sketch: Let Φ(t) = t d(Lη(t)−1)d(expe)(tu0). Use the group
structure to obtain an integral equation for Φ(t):

Φ(t) = Ω(t)︸︷︷︸
invertible

+

t∫
0

Ad∗η(t)Adη(t)ad
∗
Φ(τ)︸ ︷︷ ︸

bounded

dτ (13)

where

ad∗u0
v =

{
∇∆−1〈v , curl u0〉 if dim(M) = 2

curl∆−1[v , curl u0] if dim(M) = 3
(14)
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When u0 is swirl-free,

u0 = a(r , z)∂r + b(r , z)∂z

then curl(u0) = f (r , z)∂θ, so that

ad∗u0
v = curl∆−1[v , curl u0]

= curl∆−1
(
df (v)∂θ

) (15)

From here, the proof is finished in two steps:

Operators map into correct spaces.

Compactness of ad∗ : Hs → Hs+1 via Rellich Lemma.
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Fredholmness allows for a deeper understanding of singularities.

A vector u0 ∈ TeDs
µ(M) where d(expe)(u0) is not invertible is

called a conjugate point. The existence of conjugate points in
Ds

µ(M) was conjectured by Arnold and proved by Misio lek (1993).
Many other examples were found since then:

Shnirelman 1994; dim(M) ≥ 3;

Misio lek 1996, when M = T2;

Ebin, Misio lek, Preston 2006, u = ∂θ, M = D2 × S1;

Preston, Washabaugh 2014, u = f (r)∂θ;

Benn 2015, dim(M) = 2, isometry group of M.

23 / 42



Assume that either dim(M) = 2 or u0 is swirl-free from now on.

We will focus on so-called regular conjugate points. This is an
open and dense subset of all conjugate points.

The multiplicity or order of a conjugate point u0 is the (finite)
number dim ker d expe(u0).
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Theorem 4 (L. - 2018)

The set Ce ⊆ TeDs
µ(M) of all regular conjugate points is a smooth

submanifold of codimension 1. Its tangent space at any u0 ∈ Ce

satisfies
Tu0Ce ⊕ Ru0 ' TeDs

µ(M).

Main ingredients:

L2 version of the Morse Index Theorem (Misio lek, Preston,
2009).

Perturbation theory for self-adjoint operators.
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Fold map: (t, s) 7→ (t2, s)
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Fold map: (t, s) 7→ (t2, s)
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Cusp map: (t, s) 7→ (s, t3 − st)
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Df (t, s) =

(
3t2 − s −t

0 1

)

Singular set = {3t2 = s}.

All points on the singular set

are folds, except for (0, 0).
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Map: (t, x1, . . . , xn) 7→ (t, tx1, . . . , txn)
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TeDs
µ(M)

u0
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TeDs
µ(M)

u0

33 / 42



TeDs
µ(M)

u0
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TeDs
µ(M)

u0
⊃ ker dexpe(u0)

35 / 42



TeDs
µ(M)

u0
⊃ ker dexpe(u0)

Tu0 Ce
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Theorem 5 (L. - 2018)

Let u0 ∈ Ce be a regular conjugate point of multiplicity 1 such that
ker d expe(u0) 6⊆ Tu0Ce . Then, in a neighborhood of u0, expe has
the normal form

expe : R×H→ R×H
(t, v) 7→ (t2, v)
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Theorem 6 (L. - 2018)

Let u0 ∈ Ce be a regular conjugate point of multiplicity 1 such that
ker d expe(u0) ⊆ Tu0Ce . Suppose u0 is normal to Ce .
Let Π be the L2 Weingarten tensor of Ce ⊆ TeDs

µ(M). If

Π(w ,w) 6= −‖w‖2
L2 , ∀w ∈ ker d expe(u0),

then near u0, expe has the normal form

expe : R2 ×H→ R2 ×H
(t, s, v) 7→ (t3 − st, s, v)
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Theorem 7 (L. - 2018)

Let u0 ∈ Ce be a regular conjugate point of multiplicity k such
that ker d expe(u) ⊆ TuCe for all u in a neighborhood of u0. Then
near u0, expe has the normal form

expe : Rk+1 ×H→ Rk+1 ×H
(t, x1, . . . , xk , v) 7→ (t, tx1, tx2, . . . , txk , v)

Remark 4

Every regular conjugate point of multiplicity k ≥ 2 falls in this case.
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Corollary 1 (L2 Morse-Littauer)

The L2 exponential map expe : TeDs
µ(M)→ Ds

µ(M) is not
injective on any neighborhood of a conjugate point.

Proof. First, note that all of the above local forms are not
injective. Let u0 ∈ TeDs

µ(M) be any regular conjugate point. One
of the following holds:

For all conjugate points u in a neighborhood of u0, we have
ker d expe(u) ⊆ TuCe .

There exists a sequence {un}n≥1 converging to u0 with
ker d expe(un) 6⊆ TunCe .
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For all conjugate points u in a neighborhood of u0, we have
ker d expe(u) ⊆ TuCe .

There exists a sequence {un}n≥1 converging to u0 with
ker d expe(un) 6⊆ TunCe .

In the first case, expe has a normal form at u0, which is not
injective.
In the second case, expe is a fold near each un, so it cannot be
injective near u0.

The result follows from the fact that regular conjugate points are
dense in the set of all conjugate points. �
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Thank you!
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