3D Euler Equations on Manifolds with Symmetry

Leandro Lichtenfelz

University of Pennsylvania

1/19/2021

Let M be a compact, oriented Riemannian manifold of dimension n=2,3. The movement of an ideal fluid filling M can be described by the Euler equations

$$\partial_t u + \nabla_u u = -\nabla p$$

 $\operatorname{div}(u) = 0$ (E)
 $u(0) = u_0$

where $u: M \times \mathbb{R} \to TM$ is the velocity and $p: M \times \mathbb{R} \to \mathbb{R}$ the pressure.

Remark 1

In Sobolev spaces H^s (for sufficiently high s), the problem (E) is locally well-posed in any dimension. It is globally well-posed in dimension two, but this is not known in dimension three.

Definition 1

A vector field u in \mathbb{R}^3 is axisymmetric if u does not depend on θ in cylindrical coordinates, i.e.,

$$u(r,z) = u_1(r,z)\partial_r + u_2(r,z)\partial_\theta + u_3(r,z)\partial_z.$$
 (1)

Definition 1

A vector field u in \mathbb{R}^3 is axisymmetric if u does not depend on θ in cylindrical coordinates, i.e.,

$$u(r,z) = u_1(r,z)\partial_r + u_2(r,z)\partial_\theta + u_3(r,z)\partial_z.$$
 (1)

Definition 2

An axisymmetric vector field u is swirl-free if it has no ∂_{θ} component, i.e.,

$$u(r,z) = u_1(r,z)\partial_r + u_3(r,z)\partial_z.$$
 (2)

Theorem (Ukhovskii, Yudovich, '68)

The 3D swirl-free Euler equations are globally well-posed.

Remark 2

Global well-posedness is still unknown in general for the axisymmetric Euler equations with swirl.

Remark 3

Since in \mathbb{R}^3 infinitesimal isometries are generated by rotations and translations, the only other interesting case is that of helicoidal symmetry.

Definition 3

A vector field in \mathbb{R}^3 is helicoidal if it commutes with the vector field $\theta_{\theta} + \partial_z$.

Definition 4

A vector field in \mathbb{R}^3 is helicoidal if it commutes with the vector field $\partial_{\theta} + \partial_z$.

Definition 5

If u is a helicoidal vector field, the swirl of u is the quantity

$$\sigma = \langle u, \partial_{\theta} + \partial_{z} \rangle$$

Theorem 1 (Dutrifoy, '99)

The 3D helicoidal, swirl-free Euler equations are globally well-posed.

Let M be a Riemannian manifold and $K \neq 0$ a Killing field on M.

Definition 6

A vector field u on M is axisymmetric if [u, K] = 0. If u is axisymmetric, its swirl is the function $\sigma = \langle u, K \rangle$. When $\sigma \equiv 0$, u is called swirl-free.

Theorem 2 (L., Misiołek, Preston '18)

If u_0 is axisymmetric (resp. swirl-free), then the corresponding solution u(t) of the Euler equations remains axisymmetric (resp. swirl-free), for as long as it exists.

A different way to model a fluid is to track the *position*, rather than the *velocity*, of each particle over time.

In this description, we let $\eta(x,t)$ be the **position**, at time t, of the particle that started at x.

By definition, $\eta(x,0) = x$ for all x.

Since fluid particles are not allowed to fuse together or split, for each fixed time t, the map

is a bijection. In fact, it is a volume-preserving diffeomorphism.

Therefore, $t\mapsto \eta_t$ is a curve in $\mathcal{D}_{\mu}(M)$, the group of Sobolev volume-preserving diffeomorphisms of M, starting at the identity map, $\eta_0=e$.

For technical reasons, it is convenient to work with diffeomorphisms which are of Sobolev class, rather than C^{∞} diffeomorphisms.

The group

$$\mathcal{D}^s_\mu(M) = \{ \eta : M \to M : \eta, \eta^{-1} \in H^s(M, M), \text{ and } \eta^* \mu = \mu \}$$

of Sobolev volume-preserving diffeomorphisms is a C^{∞} Hilbert manifold (*Eells* '66; *Ebin-Marsden* '70; *Omori* '74).

Its tangent space at the identity id is the set

$$T_e\mathcal{D}^s_\mu(M)=\{v\in H^s(TM)\,:\,\mathrm{div}\,v=0\}$$

of all divergence-free vector fields on M. At other points $\eta \in \mathcal{D}^s_\mu(M)$, the tangent space is

$$\mathcal{T}_{\eta}\mathcal{D}_{\mu}^{\mathfrak{s}}(M) = \left\{ v \circ \eta \, : \, v \in \mathcal{T}_{e}\mathcal{D}_{\mu}^{\mathfrak{s}}(M) \right\}$$

 $\mathcal{D}^s_{\mu}(M)$ is not a Lie group: right multiplication

$$R_{\eta}: \mathcal{D}_{\mu}^{s}(M) \to \mathcal{D}_{\mu}^{s}(M)$$

$$\xi \mapsto \xi \circ \eta$$

$$(4)$$

is smooth, since

$$dR_{\eta}(e): T_{e}\mathcal{D}_{\mu}^{s}(M) \to T_{\eta}\mathcal{D}_{\mu}^{s}(M)$$

$$u \mapsto u \circ \eta$$

$$(5)$$

However, left multiplication

$$L_{\eta}: \mathcal{D}_{\mu}^{s}(M) \to \mathcal{D}_{\mu}^{s}(M)$$
$$\xi \mapsto \eta \circ \xi \tag{6}$$

is not smooth, because the expression

$$dL_{\eta}(e): T_{e}\mathcal{D}_{\mu}^{s}(M) \to T_{\eta}\mathcal{D}_{\mu}^{s-1}(M)$$

$$u \mapsto D\eta \circ u$$
(7)

causes a loss of one derivative due to the $D\eta$ term.

 $\mathcal{D}^s_\mu(M)$ also carries a natural right-invariant Riemannian metric, given at the tangent space to the identity map by

$$\langle u,v
angle_{L^2} = \int\limits_M \langle u,v
angle \, dV, \quad u,v \in T_e \mathcal{D}^s_\mu(M)$$

This is a *weak* Riemannian metric, i.e., it defines a topology (L^2) which is weaker than the topology our manifold has (H^s) .

Therefore, the existence of a smooth Levi-Civita connection and geodesic spray are not guaranteed, but must be proved separately. This was done by Ebin and Marsden in their 1970s paper.

Arnold's insight: a curve

$$\eta:[0,T) \to \mathcal{D}^s_{\mu}(M), \quad \eta(0)=\mathrm{id},$$

is a geodesic $(\eta''(t) = 0)$ of the L^2 metric if and only if the time-dependent vector field u(x,t) defined by

$$\frac{d}{dt}\eta(x,t) = u \circ \eta(x,t) \tag{8}$$

is a solution of the Euler equations:

$$\frac{\partial u}{\partial t} + \nabla_u u + \nabla p = 0$$

$$\operatorname{div} u = 0$$

$$u(0) = u_0$$
(9)

We have an L^2 Riemannian exponential map

$$\exp_e: \mathcal{U} \subseteq T_e \mathcal{D}^s_{\mu}(M) \to \mathcal{D}^s_{\mu}(M) \tag{10}$$

which can be viewed as follows: given a divergence-free vector field $u_0 \in \mathcal{U}$, let u(x,t) be the unique solution of Euler equations with initial data u_0 . Integrating this vector field, we get the position $\eta(x,t)$. Then,

$$\exp_e(u_0) = \eta(x,1)$$

It can be shown that this map is C^{∞} smooth, and in fact a diffeomorphism in a neighborhood of $0 \in \mathcal{U}$.

This proves local well-posedness (in H^s) of the Euler equations in all dimensions.

Theorem (Ebin, Misiołek, Preston - 2006)

If dim(M) = 2, exp_e is a Fredholm map of index zero. If dim(M) = 3, exp_e is not Fredholm.

Take $M=\mathbb{D}^2 \times \mathbb{S}^1$, and let $u_0=\partial_{\theta}$. Then, then the image of

$$d(\exp_e)(\pi u_0): T_e \mathcal{D}^s_\mu(M) o T_{\exp_e(u_0)} \mathcal{D}^s_\mu(M)$$

is not closed.

Note that this is an axisymmetric flow, but not swirl-free.

Now let M be a Riemannian 3-manifold with a Killing vector field $K \neq 0$. Let $\{\phi_t\}$ be the flow of K. Consider the sets:

$$\mathcal{A}^{s}(M) = \{ \eta \in \mathcal{D}_{\mu}^{s}(M) : \eta \circ \phi_{t} = \phi_{t} \circ \eta, \ \forall t \}$$
$$T_{e}\mathcal{A}^{s}(M) = \{ u \in T_{e}\mathcal{D}_{\mu}^{s}(M) : [u, K] = 0 \}$$
 (11)

Theorem 3 (L., Misiołek, Preston, 2018)

The set $\mathcal{A}^s(M)$ is a totally geodesic submanifold of $\mathcal{D}^s_{\mu}(M)$ with Lie algebra $T_e\mathcal{A}^s(M)$.

If u_0 is a vector field of sufficiently small swirl, then the map

$$d(\exp_e)(u_0): T_e \mathcal{A}^s(M) \to T_{\exp_e(u_0)} \mathcal{A}^s(M)$$
 (12)

is Fredholm of index zero.

Proof sketch: Let $\Phi(t) = t d(L_{\eta(t)^{-1}}) d(\exp_e)(tu_0)$. Use the group structure to obtain an integral equation for $\Phi(t)$:

$$\Phi(t) = \underbrace{\Omega(t)}_{invertible} + \int_{0}^{t} \underbrace{\operatorname{Ad}_{\eta(t)}^{*} \operatorname{Ad}_{\eta(t)} \operatorname{ad}_{\Phi(\tau)}^{*}}_{bounded} d\tau$$
 (13)

where

$$\operatorname{ad}_{u_0}^* v = \begin{cases} \nabla \Delta^{-1} \langle v, \operatorname{curl} u_0 \rangle & \text{if } \dim(M) = 2\\ \operatorname{curl} \Delta^{-1} [v, \operatorname{curl} u_0] & \text{if } \dim(M) = 3 \end{cases}$$
(14)

When u_0 is swirl-free,

$$u_0 = a(r,z)\partial_r + b(r,z)\partial_z$$

then $\operatorname{curl}(u_0) = f(r,z)\partial_{\theta}$, so that

$$\operatorname{ad}_{u_0}^* v = \operatorname{curl} \Delta^{-1}[v, \operatorname{curl} u_0]$$
$$= \operatorname{curl} \Delta^{-1}(df(v)\partial_{\theta})$$
 (15)

From here, the proof is finished in two steps:

- Operators map into correct spaces.
- Compactness of $ad^*: H^s \to H^{s+1}$ via Rellich Lemma.

Fredholmness allows for a deeper understanding of singularities.

A vector $u_0 \in T_e \mathcal{D}^s_\mu(M)$ where $d(\exp_e)(u_0)$ is not invertible is called a *conjugate point*. The existence of conjugate points in $\mathcal{D}^s_\mu(M)$ was conjectured by Arnold and proved by Misiołek (1993). Many other examples were found since then:

- Shnirelman 1994; $dim(M) \ge 3$;
- Misiołek 1996, when $M = \mathbb{T}^2$;
- Ebin, Misiołek, Preston 2006, $u = \partial_{\theta}$, $M = \mathbb{D}^2 \times \mathbb{S}^1$;
- Preston, Washabaugh 2014, $u = f(r)\partial_{\theta}$;
- Benn 2015, dim(M) = 2, isometry group of M.

Assume that either dim(M) = 2 or u_0 is swirl-free from now on.

We will focus on so-called **regular conjugate points**. This is an open and dense subset of all conjugate points.

The **multiplicity** or **order** of a conjugate point u_0 is the (finite) number dim ker $d \exp_e(u_0)$.

Theorem 4 (L. - 2018)

The set $C_e \subseteq T_e \mathcal{D}^s_{\mu}(M)$ of all regular conjugate points is a smooth submanifold of codimension 1. Its tangent space at any $u_0 \in C_e$ satisfies

$$T_{u_0}C_e\oplus \mathbb{R}u_0\simeq T_e\mathcal{D}^s_\mu(M).$$

Main ingredients:

- L^2 version of the Morse Index Theorem (Misiołek, Preston, 2009).
- Perturbation theory for self-adjoint operators.

Fold map: $(t,s)\mapsto (t^2,s)$

Fold map: $(t,s)\mapsto (t^2,s)$

Cusp map: $(t,s) \mapsto (s,t^3-st)$

$$Df(t,s) = \begin{pmatrix} 3t^2 - s & -t \\ 0 & 1 \end{pmatrix}$$

Singular set =
$$\{3t^2 = s\}$$
.

All points on the singular set are folds, except for (0,0).

 $\mathsf{Map} \colon (t, x_1, \dots, x_n) \mapsto (t, tx_1, \dots, tx_n)$

Theorem 5 (L. - 2018)

Let $u_0 \in C_e$ be a regular conjugate point of multiplicity 1 such that $\ker d \exp_e(u_0) \not\subseteq T_{u_0}C_e$. Then, in a neighborhood of u_0 , \exp_e has the normal form

$$\exp_e : \mathbb{R} \times \mathbb{H} \to \mathbb{R} \times \mathbb{H}$$

$$(t, v) \mapsto (t^2, v)$$

Theorem 6 (L. - 2018)

Let $u_0 \in C_e$ be a regular conjugate point of multiplicity 1 such that $\ker d \exp_e(u_0) \subseteq T_{u_0}C_e$. Suppose u_0 is normal to C_e . Let Π be the L^2 Weingarten tensor of $C_e \subseteq T_e\mathcal{D}^s_\mu(M)$. If

$$\Pi(w,w) \neq -\|w\|_{L^2}^2, \ \forall w \in \ker d \exp_e(u_0),$$

then near u_0 , \exp_e has the normal form

$$\exp_e : \mathbb{R}^2 \times \mathbb{H} \to \mathbb{R}^2 \times \mathbb{H}$$

$$(t, s, v) \mapsto (t^3 - st, s, v)$$

Theorem 7 (L. - 2018)

Let $u_0 \in C_e$ be a regular conjugate point of multiplicity k such that $\ker d \exp_e(u) \subseteq T_u C_e$ for all u in a neighborhood of u_0 . Then near u_0 , \exp_e has the normal form

$$\exp_{e}: \mathbb{R}^{k+1} \times \mathbb{H} \to \mathbb{R}^{k+1} \times \mathbb{H}$$
$$(t, x_{1}, \dots, x_{k}, v) \mapsto (t, tx_{1}, tx_{2}, \dots, tx_{k}, v)$$

Remark 4

Every regular conjugate point of multiplicity $k \ge 2$ falls in this case.

Corollary 1 (L^2 Morse-Littauer)

The L^2 exponential map $\exp_e: T_e\mathcal{D}^s_\mu(M) \to \mathcal{D}^s_\mu(M)$ is not injective on any neighborhood of a conjugate point.

Proof. First, note that all of the above local forms are not injective. Let $u_0 \in T_e \mathcal{D}_\mu^s(M)$ be any regular conjugate point. One of the following holds:

- For all conjugate points u in a neighborhood of u_0 , we have $\ker d \exp_e(u) \subseteq T_u C_e$.
- There exists a sequence $\{u_n\}_{n\geq 1}$ converging to u_0 with $\ker d \exp_e(u_n) \not\subseteq T_{u_n}C_e$.

- For all conjugate points u in a neighborhood of u_0 , we have $\ker d \exp_e(u) \subseteq T_u C_e$.
- There exists a sequence $\{u_n\}_{n\geq 1}$ converging to u_0 with $\ker d \exp_e(u_n) \not\subseteq T_{u_n}C_e$.

In the first case, \exp_e has a normal form at u_0 , which is not injective.

In the second case, \exp_e is a fold near each u_n , so it cannot be injective near u_0 .

The result follows from the fact that regular conjugate points are dense in the set of all conjugate points. ■

Thank you!