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Let M be a compact, oriented Riemannian manifold of dimension
n =2,3. The movement of an ideal fluid filling M can be
described by the Euler equations

Ooru+Vyu=—-Vp
div(u) =0 (E)
u(0) = uo
where u: M x R — TM is the velocity and p: M x R — R the
pressure.

Remark 1

In Sobolev spaces H* (for sufficiently high s), the problem (E) is
locally well-posed in any dimension. It is globally well-posed in
dimension two, but this is not known in dimension three.
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A vector field u in R3 is axisymmetric if u does not depend on 6 in
cylindrical coordinates, i.e.,

u(r,z) = ui(r,z)0r + ua(r,z)0p + us(r, z)0;. (1)




A vector field u in R3 is axisymmetric if u does not depend on 6 in
cylindrical coordinates, i.e.,

u(r,z) = ui(r,z)0, + ua(r,z)0p + us(r, z)0;. (1)

Definition 2

An axisymmetric vector field u is swirl-free if it has no Oy
component, i.e.,

u(r,z) = ui(r,z)0r + us(r, z)0;. (2)
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Theorem (Ukhovskii, Yudovich, '68)

The 3D swirl-free Euler equations are globally well-posed.

Remark 2

Global well-posedness is still unknown in general for the
axisymmetric Euler equations with swirl.

Remark 3

Since in R3 infinitesimal isometries are generated by rotations and
translations, the only other interesting case is that of helicoidal
symmetry.
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| Definition3 |

A vector field in R3 is helicoidal if it commutes with the vector
field 6y + O,.
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| Definition 4

A vector field in R3 is helicoidal if it commutes with the vector
field Op + 0.

Definition 5

If u is a helicoidal vector field, the swirl of u is the quantity

o= (u,0p + 9;)

Theorem 1 (Dutrifoy, '99)

The 3D helicoidal, swirl-free Euler equations are globally
well-posed.
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Let M be a Riemannian manifold and K # 0 a Killing field on M.

Definition 6

A vector field u on M is axisymmetric if [u, K] = 0.
If u is axisymmetric, its swirl is the function o = (u, K).
When o = 0, u is called swirl-free.

Theorem 2 (L., Misiotek, Preston '18)

If ug is axisymmetric (resp. swirl-free), then the corresponding
solution u(t) of the Euler equations remains axisymmetric (resp.
swirl-free), for as long as it exists.
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A different way to model a fluid is to track the position, rather
than the velocity, of each particle over time.

In this description, we let n(x, t) be the position, at time t, of
the particle that started at x.

By definition, n(x,0) = x for all x.
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Since fluid particles are not allowed to fuse together or split, for
each fixed time t, the map

ne:M—-M
x = n(x, t)

3)
is a bijection. In fact, it is a volume-preserving diffeomorphism.
Therefore, t — 7, is a curve in D, (M), the group of Sobolev

volume-preserving diffeomorphisms of M, starting at the identity
map, 7o = e.
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For technical reasons, it is convenient to work with diffeomorphisms
which are of Sobolev class, rather than C* diffeomorphisms.

The group
Dy (M) ={n:M—=M:nn"eH(MM), andn'n=p}

of Sobolev volume-preserving diffeomorphisms is a C*° Hilbert
manifold (Eells '66; Ebin-Marsden '70; Omori '74).

Its tangent space at the identity id is the set
TeD; (M) = {v € H(TM) : divv = 0}

of all divergence-free vector fields on M. At other points
n € D; (M), the tangent space is

T,D;,(M) = {von : ve T.D;(M)}
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D;(M) is not a Lie group: right multiplication
R, : D;,(M) — D;,(M)
E—E&on
is smooth, since

dR,(e) : TeD5(M) — T, D5(M)

ur—uonm
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However, left multiplication

L, :D;(M) — D; (M)

(6)
Ermof
is not smooth, because the expression
dLy(e) : TeD5 (M) — T,D57H (M) @

u— Dnou

causes a loss of one derivative due to the Dn term.
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D;(M) also carries a natural right-invariant Riemannian metric,
given at the tangent space to the identity map by

(u,v)2 = /(u, vydV, u,ve T.D; (M)
M

This is a weak Riemannian metric, i.e., it defines a topology (L?)
which is weaker than the topology our manifold has (H®).

Therefore, the existence of a smooth Levi-Civita connection and

geodesic spray are not guaranteed, but must be proved separately.
This was done by Ebin and Marsden in their 1970s paper.
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Arnold’s insight: a curve
n:[0,T) = D;(M), n(0)=id,

is a geodesic (17(t) = 0) of the L? metric if and only if the
time-dependent vector field u(x, t) defined by

d

n(x,8) = won(x. 1 ©®)

is a solution of the Euler equations:

ou

E%—VUU—I—Vp—O
divy = 0 (9)
u(0) = wp
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We have an L2 Riemannian exponential map
exp, 1 U C TeDZ(/\/I) — DZ(M) (10)

which can be viewed as follows: given a divergence-free vector field
up € U, let u(x,t) be the unique solution of Euler equations with
initial data ug. Integrating this vector field, we get the position
n(x, t). Then,

eXpe(UO) = 77(Xa 1)
It can be shown that this map is C*° smooth, and in fact a
diffeomorphism in a neighborhood of 0 € U.

This proves local well-posedness (in H*) of the Euler equations in
all dimensions.
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Theorem (Ebin, Misiotek, Preston - 2006)

If dim(M) = 2, exp,, is a Fredholm map of index zero.
If dim(M) = 3, exp,, is not Fredholm.

Take M =D? x S!, and let ug = dy. Then, then the image of
d(exp,)(mup) : TeDZ(M) — Texpe(uO)DZ(M)

is not closed.

Note that this is an axisymmetric flow, but not swirl-free.
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Now let M be a Riemannian 3-manifold with a Killing vector field
K # 0. Let {¢+} be the flow of K. Consider the sets:

A*(M) ={n € D;(M) :no ¢t =¢eton, Vt}

(11)
TeA*(M) = {u € T.D5(M) : [u, K] = 0}

Theorem 3 (L., Misiotek, Preston, 2018)

The set A°(M) is a totally geodesic submanifold of D;, (M) with
Lie algebra T, A*(M).

If uy is a vector field of sufficiently small swirl, then the map
d(expe)(to) : Te A (M) = Texp, (1) A (M) (12)

is Fredholm of index zero.
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Proof sketch: Let ®(t) = t d(L,;)-1)d(expe)(tup). Use the group
structure to obtain an integral equation for ®(t):

t

o) = Q) + [ AdyAdygadyydr  (13)
invertible 0 bounded

where

VA Y v, curlug)  if dim(M)

ad, v = - (14)
curl A=Yv, curl wp] if dim(M)

2
3
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When uq is swirl-free,
up = a(r,z)0, + b(r, z)0,
then curl(ug) = f(r,z)0y, so that

adf v = curl A™[v, curl ug]
= curl A~ (df (v)dp)

From here, the proof is finished in two steps:

m Operators map into correct spaces.

m Compactness of ad* : H* — H*! via Rellich Lemma.
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Fredholmness allows for a deeper understanding of singularities.

A vector ug € TD;,(M) where d(exp,)(uo) is not invertible is
called a conjugate point. The existence of conjugate points in

D}, (M) was conjectured by Arnold and proved by Misiotek (1993).
Many other examples were found since then:

m Shnirelman 1994; dim(M) > 3;

m Misiotek 1996, when M = T?;

m Ebin, Misiotek, Preston 2006, u = 9y, M = D? x S1;
m Preston, Washabaugh 2014, u = f(r)0y;

m Benn 2015, dim(M) = 2, isometry group of M.
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Assume that either dim(M) = 2 or wg is swirl-free from now on.

We will focus on so-called regular conjugate points. This is an
open and dense subset of all conjugate points.

The multiplicity or order of a conjugate point ug is the (finite)
number dim ker d exp,(up)-
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Theorem 4 (L. - 2018)

The set Co C T.D;, (M) of all regular conjugate points is a smooth
submanifold of codimension 1. Its tangent space at any ug € Ce
satisfies

TupCe ® Rug >~ T Dy, (M).

Main ingredients:

m L2 version of the Morse Index Theorem (Misiotek, Preston,
2009).

m Perturbation theory for self-adjoint operators.
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Fold map: (t,s) — (t2,s)
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Fold map: (t,s) — (t2,s)
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Cusp map: (t,s) — (s, t3 — st)
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2_ ¢ _
Df(t,s):<3t0 s 1t)

Singular set = {3t* = s}.

All points on the singular set
are folds, except for (0,0).
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Map: (t,x1,...,Xn) — (L, tx1,. .., tXs)
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TeD; (M)
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TeD; (M)
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TeD; (M)

> ker dexpe(up)
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TeD; (M)
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Theorem 5 (L. - 2018)

Let ug € C be a regular conjugate point of multiplicity 1 such that

ker d exp.(uo) € Tu,Ce. Then, in a neighborhood of uy, exp, has
the normal form

expe : R xH — R x H
(t,v) = (£%,v)
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Theorem 6 (L. - 2018)

Let ug € Ce be a regular conjugate point of multiplicity 1 such that
ker d expg(uo) C Ty, Ce. Suppose ug is normal to Ce.
Let I be the L? Weingarten tensor of C, C TeDZ(M). If

M(w, w) # —HWHfQ, VYw € ker d exp,(up),
then near ug, exp, has the normal form

exp, 1 R? x H — R? x H

(t,s,v) — (t3 —st,s,v)
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Theorem 7 (L. - 2018)

Let up € C. be a regular conjugate point of multiplicity k such
that ker d exp,(u) C T,Ce for all u in a neighborhood of ug. Then
near ug, exp, has the normal form

exp, : R H — RF x H

(£, X1,y Xk, V) = (t, tx1, tX2, . . o, EXK, V)

Remark 4
Every regular conjugate point of multiplicity k > 2 falls in this case.
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Corollary 1 (L2 Morse-Littauer)

The L exponential map exp, : TeD5 (M) — D5(M) is not

injective on any neighborhood of a conjugate point.

Proof. First, note that all of the above local forms are not
injective. Let ug € TeD;,(M) be any regular conjugate point. One
of the following holds:
m For all conjugate points u in a neighborhood of ug, we have
ker d exp(u) C T,Ce.

m There exists a sequence {u,}n>1 converging to up with
ker d expo(un) € Ty, Ce.
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m For all conjugate points u in a neighborhood of uy, we have
ker d exp,(u) C T,Ce.
m There exists a sequence {up},>1 converging to ug with
ker d expgo(un) € Ty, Ce.
In the first case, exp, has a normal form at ug, which is not
injective.
In the second case, exp, is a fold near each up, so it cannot be
injective near ug.

The result follows from the fact that regular conjugate points are
dense in the set of all conjugate points. H
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Thank you!
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